ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Mohamed Yehia Habash, Nabil M. A. Ayad, Abd Elhady A. Ammar
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1484-1495
Technical Note | doi.org/10.1080/00295450.2022.2035645
Articles are hosted by Taylor and Francis Online.
In nuclear facilities, it is very significant for the monitoring and control system to accurately monitor and detect harmful radiation inside and outside the nuclear facility in a real-time manner to protect personnel, visitors, and the environment. This is because of the effect of ionizing radiations on the genetic material deoxyribonucleic acid or DNA contained in the human body and other living organisms. As a result, harmful genetic mutations can be caused and passed on to the next generations. In this study, a framework based on wireless sensors and actors’ networks is proposed to monitor the radiation levels inside and outside the nuclear facility. The sensors network is used to sense the environment, and its measurements are sent to a central device which makes the necessary analysis and passes this information to the monitoring and control system of the nuclear facility. A sensor reading validation algorithm is used to validate the sensors’ readings before being sent to the monitoring and control units; that is, to distinguish between the real events and the sensors’ faults, and finally, to have accurate and trusted measurements. After the sensors’ measurements are validated, they are tested against threshold values to detect new events and trigger the alarm system of the monitoring and control system to alert the operator to take corrective actions. Finally, the framework includes a system to enable the workers and visitors to be notified about the radiation levels in their and nearby areas. This technique is tested and investigated using the Castalia simulator. The simulation results are of great importance and show high event detection accuracy, low communication overheads between sensor devices, and low power consumption for the sensor devices.