ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Abdelfatah Abdelmaksoud, Said Haggag, Magdy M. Zaky, Moussa Osman
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1471-1483
Technical Paper | doi.org/10.1080/00295450.2022.2035644
Articles are hosted by Taylor and Francis Online.
In the present study, an analysis of a hypothetical complete loss-of-coolant accident in a typical open-pool research reactor is conducted. The reactor core is assumed to be completely uncovered and exposed to the ambient air. The possibility of passively cooling the decay heat of the exposed reactor core by natural convection to air and thermal radiation until core reflooding is investigated. A three-dimensional computational fluid dynamics analysis is conducted for the uncovered core while cooled by air natural convection and thermal radiation. The reactor core is simulated as a porous zone with decay heat generation specified as a cosine-shape distribution. The reactor core decay heat acts as a driving force for the coolant flow from the cold leg to the hot leg. The thermal equilibrium porous media model is used to represent the energy equation inside the core region. This study is conducted for core uncover time (the time interval between reactor shutdown and the moment when the reactor core is drained of water) of 10E3, 10E4, 10E5, 10E6, 10E7, and 10E8 s. Contour plots of temperature, velocity, density, and pressure at different values of core uncover time are illustrated. It’s found that for core uncover times of 10E3, and 10E4 s, the maximum core temperature exceeds the cladding melting point. The core maximum temperature is well below the melting point for uncover times of 10E5, 10E6, 10E7, and 10E8 s.