ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Abdelfatah Abdelmaksoud, Said Haggag, Magdy M. Zaky, Moussa Osman
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1471-1483
Technical Paper | doi.org/10.1080/00295450.2022.2035644
Articles are hosted by Taylor and Francis Online.
In the present study, an analysis of a hypothetical complete loss-of-coolant accident in a typical open-pool research reactor is conducted. The reactor core is assumed to be completely uncovered and exposed to the ambient air. The possibility of passively cooling the decay heat of the exposed reactor core by natural convection to air and thermal radiation until core reflooding is investigated. A three-dimensional computational fluid dynamics analysis is conducted for the uncovered core while cooled by air natural convection and thermal radiation. The reactor core is simulated as a porous zone with decay heat generation specified as a cosine-shape distribution. The reactor core decay heat acts as a driving force for the coolant flow from the cold leg to the hot leg. The thermal equilibrium porous media model is used to represent the energy equation inside the core region. This study is conducted for core uncover time (the time interval between reactor shutdown and the moment when the reactor core is drained of water) of 10E3, 10E4, 10E5, 10E6, 10E7, and 10E8 s. Contour plots of temperature, velocity, density, and pressure at different values of core uncover time are illustrated. It’s found that for core uncover times of 10E3, and 10E4 s, the maximum core temperature exceeds the cladding melting point. The core maximum temperature is well below the melting point for uncover times of 10E5, 10E6, 10E7, and 10E8 s.