ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Md Motiur Rahman, Tahmina Tasnim Nahar, Dookie Kim, Dae-Wook Park
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1453-1470
Technical Paper | doi.org/10.1080/00295450.2022.2033597
Articles are hosted by Taylor and Francis Online.
The dynamic responses of three storied auxiliary building of a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall are investigated in this study. The dynamic characterization is weighed through a shake table test and evaluated the efficiency of various structural modeling systems for evaluating seismic responses. The shear wall was subjected to a collaborative research round-robin analysis conducted by the Korea Atomic Energy Research Institute to forecast seismic responses of the auxiliary building in the NPP using a shake table test. The shake table test was performed with five different levels of intensity measures of the base excitation to obtain acceleration responses from different positions of the building in one horizontal direction (front-back). The main motivation of this study is to develop a nonlinear numerical model and examine the efficiency of various modeling approaches for evaluating the performance under seismic loading. Three numerical modeling approaches, i.e., multi-layer shell element modeling (MLSM), fiber beam-column element modeling (FBCM), and beam-truss element modeling (BTM), are generated to simulate the seismic response behaviors of the auxiliary building structure. Modal analysis, floor response spectra, acceleration amplification factor along with height, and story shear force of the building are compared as they are critical responses for evaluating the seismic vulnerability of the structure. The comparison shows that all the nonlinear numerical modeling approaches, i.e., MLSM, FBCM, and BTM, can predict the complex behavior of a shear wall system for low earthquake level, but for high earthquake level, MLSM shows better agreement with the shake table experiment. So, it is recommended to use MLSM modeling for nonlinear analysis with an earthquake intensity measure of 1 g or more.