ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Alberto Talamo, S. N. P. Vegendla, A. Bergeron, F. Heidet, B. Ade, B. R. Betzler
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1433-1452
Technical Paper | doi.org/10.1080/00295450.2022.2033596
Articles are hosted by Taylor and Francis Online.
This work presents multiphysics analyses on the bottom components of the Transformational Challenge Reactor (TCR) facility. These components include the bottom axial reflector and the steel exit cone. The bottom axial reflector is made of pure silicon carbide elements hosting helium cooling channels. These elements are three-dimensional (3D) printed, and therefore can host any arbitrary shape of the helium cooling channels. The design of the bottom reflector considers the neutronics and thermofluid dynamics performances as well as the manufacturing process optimization. More precisely, the best design of the bottom reflector reduces neutron leakage by avoiding straight cylindrical helium channels that facilitate neutron leakage, minimizes the helium flow pressure drop, and reduces the number of 3D printed silicon carbide pieces. The exit cone steel structure collects the hot helium from the bottom fuel assemblies and channels the cold helium to the top of the fuel assemblies. The steel’s simultaneous contact with hot and cold helium flows sets a large thermal gradient. Different designs of the exit cone are proposed to reduce the steel equivalent stress from the helium thermal load. The multiphysics analyses have been performed using Ansys Fluent, Ansys Mechanical, STAR-CCM+, and Serpent computer programs.