ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Kun-Su Lim, Chang-Lak Kim, Sanghwa Shin
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1406-1415
Technical Paper | doi.org/10.1080/00295450.2022.2031496
Articles are hosted by Taylor and Francis Online.
Determining whether to release a site after decommissioning a nuclear facility should be preceded by an environmental impact assessment of the exposure radiation dose according to the radionuclides in the soil. Currently, in Korea, various evaluation methodologies and decommissioning technologies are being studied for the first decommissioning of nuclear power plants, starting with Kori Nuclear Power Plant Unit (Kori-1), which is based on the “Multi-Agency Radiation Survey and Site Investigation Manual MARSSIM” developed in the United States. The scope and evaluation targets of deep soil may differ depending on the purpose, but it has been confirmed that the International Atomic Energy Agency and the U.S. Nuclear Regulatory Commission are targeting subsurface soil. MARSSIM outlines the need for an evaluation of this subsurface soil but does not suggest specific methods. In NUREG-1757, which complements MARSSIM, it is confirmed that subsurface soil specifically means a soil layer that is 15 to 30 cm deep in the surface layer. In the current study, using the previously verified computational code RESidual RADioactivity (RESRAD)-ONSITE, a methodology for summation is proposed to evaluate the impact of subsurface soil more flexibly and realistically while minimizing the exposure dose evaluation procedure. When using RESRAD-ONSITE according to this evaluation methodology, it was confirmed that it is possible to respond to changes in the depths of various soil layers. In addition, it was also confirmed that this methodology is adaptable to the contamination of nuclides, such as 60Co, 137Cs, 152Eu, and 154Eu, which are expected to be major nuclides when decommissioning nuclear facilities.