ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Youngseob Moon, Yonghoon Jeong
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1393-1405
Technical Paper | doi.org/10.1080/00295450.2021.2018276
Articles are hosted by Taylor and Francis Online.
Electrical cables are extensively used in nuclear power plants. Therefore, the fire-retardant performance of electrical cables is generally verified according to the Institute of Electrical and Electronics Engineers (IEEE) 383 standard, which describes the requirements for flame testing of cables. However, the IEEE 383 standard only stipulates one requirement for the minimum ambient temperature (5°C) surrounding the facilities for the flame test. To analyze the influence of the ambient temperature on the fire-retardant performance of 5cables, flame test experiments were conducted on two types of non–Class 1E cables under several conditions with respect to the seasonal ambient temperatures surrounding the experimental facilities. According to the results, the burning lengths of the cables did not increase in proportion to the increase in the ambient temperature. The longest burning lengths of the cables were obtained from experiments conducted in the autumn season, and not the summer season (with the highest ambient temperature). To investigate these experimental trends, we analyzed the influence of the ambient temperature on the flammability of the cables in terms of the consumption rate of the propane fuel used for the flame tests and the evaporation rate of volatile cable materials. Consequently, it was found that the highest flammability of the cables was observed under autumn conditions, similar to the standard temperature conditions in accordance with the IEEE 1202 standard and in which the volatile materials in the cables did not evaporate more than in the summer condition.