ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Arvind Sundaram, Yeni Li, Hany Abdel-Khalik
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1365-1381
Technical Paper | doi.org/10.1080/00295450.2022.2027147
Articles are hosted by Taylor and Francis Online.
The widespread digitization of critical industrial systems such as nuclear reactors has led to the development of digital twins and/or the adoption of artificial intelligence techniques for simulating baseline behavior and performing predictive maintenance. Such analytical tools, referred to as anomaly detection techniques, rely on features extracted from data that describe the underlying physical process. While these anomaly detection systems may work well with simulated data, their real-world applications are often hindered by the presence of noise. In some cases, noise may obscure subtle anomalies that may carry information about incipient stages of system faults. These subtle variations may also be the result of malicious intrusion such as so-called false data injection attack, equipment degradation causing sensor drift, or other natural disturbances in the process or the sensors. Consequently, there is a need to extract features that are robust to noise and also denoise data in a manner that aids machine-learning (ML) tools in diagnostics. In this regard, this paper presents a singular value decomposition–based statistical data–driven approach for feature extraction, denoted by randomized window decomposition, to capture the underlying physics of the system. Additionally, the features are used to denoise data to reveal subtle anomalies while also preserving relevant information for ML algorithms. The denoising algorithm is demonstrated using a RELAP5 simulation of a representative nuclear reactor with virtual noise.