ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Mustafa H. Almadih, T. Almudhhi, S. Ebrahim, A. Howell, G. R. Garrett, S. M. Bajorek, F. B. Cheung
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1290-1300
Technical Paper | doi.org/10.1080/00295450.2021.2000558
Articles are hosted by Taylor and Francis Online.
In this study, boiling regimes have been identified and analyzed along with the corresponding vapor-liquid interfacial morphologies and heat transfer behaviors during quenching of a heated rod using an acoustic measurement technique. The quenching experiments are performed by using cylindrical test samples that are embedded with thermocouples. The experimental work includes investigating the whole range of pool boiling regimes from film boiling through transition boiling to nucleate boiling using Python’s tools of signal processing. The boiling signals are recorded by a special hydrophone (i.e., the HTI-96-Min Exportable, High Tech, Inc.) to register the different sound waves generated by boiling under the water. This special hydrophone is capable of working in boiling water to record high- and low-frequency signals in subcooled pool boiling. The latter has many applications, such as the operations of advanced nuclear reactors, chemical processing, power generation, etc. In this work, the technique of signal processing is employed to identify the boiling regimes and to seek a new understanding of the boiling dynamics, particularly vapor-liquid interfacial morphologies, by applying a new tool for signal processing. Physically, each boiling regime should have a characteristic dominant acoustic signal that can be identified. By correlating the acoustic signatures with the boiling heat fluxes in various regimes, the minimum and maximum heat fluxes measured during the quenching of the cylindrical samples can be identified from the recorded acoustic signals during subcooled pool boiling.