ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Gang Li, Ghaouti Bentoumi, Liqian Li
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1214-1222
Technical Paper | doi.org/10.1080/00295450.2021.2011672
Articles are hosted by Taylor and Francis Online.
Organic liquid scintillators, such as EJ-309, are capable of detecting fast neutrons and discriminating gamma rays through pulse shape. Higher detection efficiency is a common objective for detector designs and research. This paper describes two methods to enhance fast neutron detection by increasing neutron collection and reducing gamma-ray interference. Neutron collection can be increased by using strong scattering material to reflect neutrons toward scintillators. Gamma-ray interference can be reduced by using heavy material to shield gamma rays; such a material could have a minimal impact on neutron detection because neutrons and gamma rays have different interaction cross sections. In this work, both effects were investigated, experimentally and by simulation. Using a graphite reflector with simple geometry, the fast neutron detection was measured to have an increase of 9%, and simulations predicted an approximately 50% increase for optimized geometry. Using a lead shielding of 8-mm thickness, the neutron detection with a Pu source was measured to have a factor of 2 increase. These methods could be useful when cost-effective and highly efficient fast neutron detection is desired.