ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Wen-Yu Wang, Yung-Shin Tseng, Chih-Hung Lin, Tsung-Kuang Yeh
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1165-1183
Technical Paper | doi.org/10.1080/00295450.2021.2011576
Articles are hosted by Taylor and Francis Online.
One of the important criteria of the emergency planning (EP) exemption for nuclear power plant (NPP) decommissioning is a minimum of 10 h available before any spent nuclear fuel (SNF) cladding temperature reaches 900°C after a complete loss of the spent fuel pool (SFP) water inventory with no heat loss (adiabatic). This study used the computational fluid dynamics (CFD) code to analyze the cladding heatup time of the SFP for a boiling water reactor. First, the developed CFD local model of the SFP was compared with the U.S. Nuclear Regulatory Commission’s (NRC’s) report on SFP heatup calculations, NSIR-2015-001. The CFD results were similar to the theoretical calculations and MELCOR results for cases with and without racks. The results also indicated that racks can significantly delay the heatup time. This study also performed sensitivity studies to identify the effects of fuel burnup, hottest assembly, and fuel loading configurations. After validation of the CFD local model against MELCOR, a whole-pool CFD model of the Chinshan SFP was developed and successfully applied to analysis for the EP exemption of the Chinshan NPP. The results predicted using the whole-pool CFD model of the Chinshan SFP agreed well with the MELCOR results. Additionally, the required 900°C heatup times were calculated based on the actual decay heat of each cycle and fuel loading at the Chinshan SFP. The required 900°C heatup times were 19.1, 54, and 64.6 h for the Chinshan SFP at 1, 5, and 10 years after shutdown, respectively. The actual fuel loading and decay heat of the Chinshan SFP met the requirements for the EP exemption after 1 year of shutdown. The main purpose of this study is to demonstrate that the CFD code can be used as a tool to calculate SFP fuel assembly heatup times for the EP exemption. The advantage of using the CFD code instead of MELCOR is that the whole-pool SFP model can be developed based on the actual decay heat of each cycle and fuel loading and to determine more realistic fuel assembly heatup time for the EP exemption.