ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. A. Pierce, L. C. Olson, H. M Ajo
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1149-1164
Technical Paper | doi.org/10.1080/00295450.2021.2004871
Articles are hosted by Taylor and Francis Online.
The Savannah River National Laboratory has evaluated several options for the disposition of stainless steel (SS)–clad plutonium metal alloy. One of the technologies under consideration is alloying of the material with SS. The resulting SS-Pu alloy would be a nonproliferable waste form consisting of a secondary Pu composition region microencapsulated in the refractory SS. Two 8-kg ingots were made at SS-1.8Zr-0.4Pu alloys (in weight percent); 8 kg was determined in a previous study to be the maximum mass of SS ingot at the maximum target Pu loading of 350 g that would result in a SS-4.4Pu alloy (in weight percent). Two smaller 500-g ingots were also produced at SS-1.6Zr-1.4Pu and SS-1.4Pu (in weight percent). The alloying of 500-g ingots at a higher Pu concentration than in the 8-kg ingots was evaluated, and the necessity of adding Zr metal to incorporate the Pu and control Pu oxidation was evaluated. Zirconium addition was found to be unnecessary to incorporate the Pu and control Pu oxidation. Drill turnings were collected from the large and small ingots, and metallographic samples were directly cut from the small ingots. Both were analyzed to validate the structure and composition region formation. Chemical analyses of turnings proved that the Pu was dispersed within the SS ingots.