ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Alexander Jesser, Kai Krycki, Martin Frank
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1114-1123
Technical Paper | doi.org/10.1080/00295450.2021.2016018
Articles are hosted by Taylor and Francis Online.
The measurement facility QUANTOM is being developed for the material analysis of radioactive waste packed up in 200-L drums. QUANTOM enables a spatially resolved elemental analysis based on prompt gamma neutron activation analysis. The evaluation of the spatially resolved gamma spectra relies on the calculation of partial cross sections. Hereby, the neutron flux spectrum enters as a parameter, which needs to be simulated in the full three-dimensional geometry of the measurement facility. To ensure that the simulations can be carried out within an acceptable time frame, we use a deterministic neutron transport code specially developed for this purpose based on the SPN approximation of the linear Boltzmann equation. The following question arises: Does the approximation in the neutron transport model still allow a calculation of the partial cross sections at a sufficient level of accuracy. Therefore, in this paper, we study the calculation of partial cross sections in light of the approximation in the neutron transport model in the geometrical setting of the measurement facility. In a simulation study we consider four typical matrix materials and compare cross sections for all elements of the periodic table to reference results obtained by Monte Carlo simulations.