ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Veronica Karriem, Edward M. Duchnowski, Bin Cheng, Lance L. Snead, Jason R. Trelewicz, Nicholas R. Brown
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1102-1113
Technical Paper | doi.org/10.1080/00295450.2021.2011573
Articles are hosted by Taylor and Francis Online.
This study evaluates beryllium-based two-phase composite moderators as an alternative to graphite in an evaluation of reactor performance and safety characteristics. Historically, modular high-temperature gas-cooled reactors (mHTGRs) use graphite as a moderator because of its high moderating ratio and reasonable thermal properties; however, graphite has unfavorable properties under irradiation, which can require component replacement and a significant radioactive waste burden. In this assessment, we explore advanced moderators comprised of magnesium oxide (MgO) as the host matrix and beryllium metal and/or beryllium oxide (Be and/or BeO) as the entrained moderating phase. For the reactor performance and thermal-hydraulic safety analysis, the core design model of the General Atomics mHTGR-350 was used to demonstrate the feasibility of a “drop-in” replacement of graphite using the beryllium-based moderators. We employed the neutronics code Serpent to analyze the moderating behavior of the composite moderators with comparisons drawn to graphite. We performed a scoping analysis of accidents for mHTGRs using RELAP to show that these moderators do not present impediments to safety and are expected to stay within temperature limits. Measured thermophysical properties of the composite moderators are used in the thermal-hydraulic assessments. Our analysis reveals that the two-phase composite MgO-matrix beryllium-based moderators are a suitable replacement for graphite.