ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Jeren Browning, Andrew Slaughter, Ross Kunz, Joshua Hansel, Bri Rolston, Katherine Wilsdon, Adam Pluth, Dillon McCardell
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1089-1101
Technical Paper | doi.org/10.1080/00295450.2021.2011574
Articles are hosted by Taylor and Francis Online.
As the nuclear industry moves toward construction of microreactors and next-generation reactors, these efforts pose new challenges. A digital-twin tool will reduce costs and risk through integration of the disparate systems used in the design, construction, and operation of these reactors. Recent investments at Idaho National Laboratory (INL) in open-source digital engineering and multiphysics framework development provide a foundation from which to create and evaluate a digital twin for nuclear reactors. This digital-twin tool will use the Single Primary Heat Pipe Extraction and Removal Emulator (SPHERE) and Microreactor AGile Non-nuclear Experimental Testbed (MAGNET) as case studies to develop a digital twin with both single and 37 heat pipe test articles. The digital twin will provide the capabilities of remote monitoring and unattended operation (autonomous control) of these systems.
A digital twin is a digital replica of an operating asset that can display data received from live sensors, update a physics model for the asset with the received data, compute predictive results of operational status with artificial intelligence (AI) to aid in optimizing asset use, and apply asset control accordingly. This twin will be developed through integration of the open-source technologies Deep Lynx (a data-warehouse technology) and the Multiphysics Object-Oriented Simulation Environment (MOOSE), physical-asset sensors, and physical-asset controls. Specifically, the general AI will successfully predict the events described as MAGNET heat pipe article test cases (such as heat pipe failure) using integrated data from the MAGNET sensors and physics-based models, including developed meta models. The integration of open-source INL software and AI assets with sensor data from a test bed will lead to a repeatable framework and guide for the creation of future digital twins. The team will also perform AI model training and experimentation to determine what models and features are most important to enable intelligent, autonomous control as well as to evaluate and determine best practices for digital-twin cybersecurity.