ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Chaoliang Xu, Xiangbing Liu, Yuanfei Li, Wangjie Qian, Wenqing Jia, Qiwei Quan, Jian Yin
Nuclear Technology | Volume 208 | Number 6 | June 2022 | Pages 1083-1088
Technical Note | doi.org/10.1080/00295450.2021.1997058
Articles are hosted by Taylor and Francis Online.
Nitrogen ion implantation can be used to improve the surface mechanical properties of austenitic stainless steel. In this study, austenitic stainless steel was irradiated with 1.1 MeV N ions at room temperature up to 15 displacements per atom. Then the microstructural and mechanical properties were studied by grazing incidence X-ray diffraction and nano-indenter. A finer synchrotron radiation diffraction pattern is obtained compared with traditional X-ray diffraction, indicating an expanded austenite phase γN and CrN phase after being irradiated to several damage levels. An irradiation-induced martensite phase appears first and then disappears with increased damage. The enrichment of the nitrogen supply in austenitic stainless steel can explain this phenomenon. The hardness data show an irradiation hardening phenomenon. Two different inflexion points hc1 and hc2 in H2 versus 1/h curves are observed, and the real hardness of the irradiation damaged layer can be obtained from the H2 versus 1/h curve between hc1 and hc2.