ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Chaoliang Xu, Xiangbing Liu, Yuanfei Li, Wangjie Qian, Wenqing Jia, Qiwei Quan, Jian Yin
Nuclear Technology | Volume 208 | Number 6 | June 2022 | Pages 1083-1088
Technical Note | doi.org/10.1080/00295450.2021.1997058
Articles are hosted by Taylor and Francis Online.
Nitrogen ion implantation can be used to improve the surface mechanical properties of austenitic stainless steel. In this study, austenitic stainless steel was irradiated with 1.1 MeV N ions at room temperature up to 15 displacements per atom. Then the microstructural and mechanical properties were studied by grazing incidence X-ray diffraction and nano-indenter. A finer synchrotron radiation diffraction pattern is obtained compared with traditional X-ray diffraction, indicating an expanded austenite phase γN and CrN phase after being irradiated to several damage levels. An irradiation-induced martensite phase appears first and then disappears with increased damage. The enrichment of the nitrogen supply in austenitic stainless steel can explain this phenomenon. The hardness data show an irradiation hardening phenomenon. Two different inflexion points hc1 and hc2 in H2 versus 1/h curves are observed, and the real hardness of the irradiation damaged layer can be obtained from the H2 versus 1/h curve between hc1 and hc2.