ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jeremiah Doyle
Nuclear Technology | Volume 208 | Number 6 | June 2022 | Pages 1012-1026
Technical Paper | doi.org/10.1080/00295450.2021.1985912
Articles are hosted by Taylor and Francis Online.
A previous study concluded that the robust, multimodule design of the NuScale small modular reactor plant can provide power at an unprecedented level of availability to mission critical facilities. This study extends the analysis to include a microgrid power distribution and delivery system to demonstrate the increased availability of power delivered to a customer. A hypothetical 12-module NuScale plant located on the Clinch River site in Tennessee is assumed to supply power from three modules to Oak Ridge National Laboratory (ORNL) through the Tennessee Valley Authority (TVA) transmission system. Combinations of transmission and power generation equipment failures that might interrupt power, and the associated frequency and duration of these failures, are identified and the potential for power interruption to ORNL is evaluated. The analysis first evaluates the existing transmission infrastructure and availability of power to ORNL to establish a baseline availability. Then, a connection from the NuScale plant through the local TVA transmission system (option 1) and a direct connection from the NuScale plant to the ORNL distribution system (option 2) are evaluated, as well as three sensitivity cases. The existing power distribution and delivery system at ORNL is already highly reliable resulting from multiple diverse power generators feeding a robust power delivery system. The primary driver of macrogrid power unavailability is the existing power generation sources, which includes two coal plants and two hydroelectric generators, rather than transmission equipment. Adding a 12-module NuScale plant to the system further reduces the unavailability of power to ORNL by over two orders of magnitude in both cases of considering only local power sources and the macrogrid as a whole. When considering only local generators, the inclusion of a NuScale plant improves the average availability of power to ORNL from three-nines to over five-nines. If the large-scale macrogrid is also included, average availability is increased to nine-nines.