ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Shanxue Xi, Haijun Li, Linxiang Li, Kun Wu, Guangwei Huang, Zungang Wang, Yiyun Zhang, Chunzhi Zhou
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 922-934
Technical Paper | doi.org/10.1080/00295450.2021.1982361
Articles are hosted by Taylor and Francis Online.
The fabrication and experimental research of a GaN-Positive-Intrinsic-Negative (GaN-PIN) betavoltaic nuclear battery driven by an 63Ni radioisotope source and an SiC-Schottky betavoltaic nuclear battery driven by an 147Pm radioisotope source are introduced. The self-absorption effects of radioisotope sources (63Ni, 147Pm) are explored and analyzed by Monte Carlo simulation. The SiC-Schottky and GaN-PIN betavoltaic cells were fabricated, where the GaN-PIN devices include different areas, absorption layer thicknesses, and electrode structures. And the measured I–V results show that the power density of the GaN-PIN nuclear battery can exceed 4.3 nW/cm2, the open-circuit voltage can reach 1.25 V, and the energy conversion efficiency can reach 2.3%. And for the SiC-Schottky betavoltaic battery, the maximum output power and energy conversion efficiency are 0.67 pW/cm2 and 0.024%, respectively.