ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Runqiu Gu, Jianfeng Cheng, Wanchang Lai, Xianli Liao, Guangxi Wang, Juan Zhai, Chenhao Zeng, Jinfei Wu, Xiaochuan Sun
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 912-921
Technical Paper | doi.org/10.1080/00295450.2021.1957661
Articles are hosted by Taylor and Francis Online.
The characteristic X-ray of a target is of considerable significance in industrial applications and medical diagnosis and treatment, and its intensity is closely related to the incident electron energy. At a high energy, it is not easy to determine the relation between characteristic X-rays and the incident electron energy through measurements, but the Monte Carlo method has a wide energy calculation range. In this study, the X-ray energy spectra of six target materials (Cu, Mo, Rh, Ag, W, and Pt) were simulated at various incident electron energies (<3 MeV) using the Monte Carlo code MCNP5 and the relation curve between the characteristic X-ray intensity of each of the target materials, and the incident electron energy was obtained through a simulation. A Si-PIN detector was used to measure the low-energy output energy spectra of two X-ray tubes (Ag and W targets). The relation curve between the X-ray tube excitation voltage and the characteristic X-ray intensity was obtained by fitting the measured data to a linear function. The simulation fitting curve and measurement fitting curve agreed well in the low-energy range. Comparisons of the calculated and measured values revealed that most of the deviations for the Ag target were less than 5%, and those for the W target were less than 6%.