ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Runqiu Gu, Jianfeng Cheng, Wanchang Lai, Xianli Liao, Guangxi Wang, Juan Zhai, Chenhao Zeng, Jinfei Wu, Xiaochuan Sun
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 912-921
Technical Paper | doi.org/10.1080/00295450.2021.1957661
Articles are hosted by Taylor and Francis Online.
The characteristic X-ray of a target is of considerable significance in industrial applications and medical diagnosis and treatment, and its intensity is closely related to the incident electron energy. At a high energy, it is not easy to determine the relation between characteristic X-rays and the incident electron energy through measurements, but the Monte Carlo method has a wide energy calculation range. In this study, the X-ray energy spectra of six target materials (Cu, Mo, Rh, Ag, W, and Pt) were simulated at various incident electron energies (<3 MeV) using the Monte Carlo code MCNP5 and the relation curve between the characteristic X-ray intensity of each of the target materials, and the incident electron energy was obtained through a simulation. A Si-PIN detector was used to measure the low-energy output energy spectra of two X-ray tubes (Ag and W targets). The relation curve between the X-ray tube excitation voltage and the characteristic X-ray intensity was obtained by fitting the measured data to a linear function. The simulation fitting curve and measurement fitting curve agreed well in the low-energy range. Comparisons of the calculated and measured values revealed that most of the deviations for the Ag target were less than 5%, and those for the W target were less than 6%.