ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Tate Shorthill, Han Bao, Hongbin Zhang, Heng Ban
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 892-911
Technical Paper | doi.org/10.1080/00295450.2021.1957659
Articles are hosted by Taylor and Francis Online.
Digital instrumentation and control (I&C) upgrades are a vital research area for the nuclear industry. Despite their performance benefits, deployment of digital I&C in nuclear power plants (NPPs) has been limited. Digital I&C systems exhibit complex failure modes including common cause failures (CCFs), which can be difficult to identify. This paper describes the development of a redundancy-guided application of the Systems-Theoretic Process Analysis and fault tree analysis for the hazard analysis of digital I&C in advanced NPPs. The resulting Redundancy-Guided Systems-Theoretic Hazard Analysis (RESHA) is applied for the case study of a representative state-of-the-art digital reactor trip system. The analysis qualitatively and systematically identifies the most critical CCFs and other hazards of digital I&C systems. Ultimately, the RESHA can help researchers make informed decisions for how, and to what degree, defensive measures such as redundancy, diversity, and defense in depth can be used to mitigate or eliminate the potential hazards of digital I&C systems.