ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Richard R. Trewin
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 860-870
Technical Paper | doi.org/10.1080/00295450.2021.1964312
Articles are hosted by Taylor and Francis Online.
The ability to extend the operating life of a pressurized water reactor depends in part on the ability of the reactor pressure vessel to withstand thermal shock concurrent with significant pressure. If during the course of a small-break loss-of-coolant accident (SBLOCA), the primary-side pressure is reduced sufficiently, cold make-up water is supplied to the cold leg by the emergency core cooling system. If incomplete mixing occurs between the cold injected water and the hot water in the primary circuit, a stream of cool water flows along the bottom of the cold leg into the downcomer. There, the cool water forms a downward-flowing buoyant plume surrounded by the hot water in the downcomer. The time-dependent spatial distributions of the temperatures and heat transfer coefficients on the inside surface of the reactor pressure vessel are important in determining compliance with regulatory requirements. The simulation of the mixing in the cold leg and downcomer is typically performed with flow-mixing computer codes, most of which use either computational fluid dynamics techniques or mechanistic models. The computer code used for this work, called KWU-MIX, makes use of mechanistic models. In previous works, the uncertainties in parameters associated with the most important phenomena that contribute to the temperature distributions were quantified by comparing experimentally derived values of the parameters with values from the mechanistic models. In this work, those uncertainties are propagated through the flow-mixing code in order to quantify the uncertainty in the calculated temperature distributions. An example of the propagation of uncertainties is given for conditions typical of a SBLOCA. Random values from each of the uncertainty distributions for the parameters of all of the most important phenomena were selected for each of 100 simulations of the typical accident conditions. The results of the 100 simulations were analyzed statistically in order to quantify the best-estimate temperature distribution and its uncertainty. The resulting best-estimate temperature distribution and its uncertainty were compared with experimental data obtained in the Upper Plenum Test Facility at the same typical accident conditions. The results of the comparison show that the uncertainty in the calculated temperature distribution bounds the experimental values.