ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ryan Stewart, Todd S. Palmer, Samuel Bays
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 822-842
Technical Paper | doi.org/10.1080/00295450.2021.1960783
Articles are hosted by Taylor and Francis Online.
The field of reactor design is rich with opportunities for applications of computational optimization algorithms; these applications can range from preliminary core design to reactor shuffling patterns. Many of these schemes rely on sets of previously generated solutions (sometimes referred to as “generations”) to inform future decisions. While it is important to build upon prior knowledge, this process requires a full generation of solutions to be formed before future solutions can be examined. Rather than relying on a generational scheme to perform an optimization, we propose using an agent-based approach in conjunction with a blackboard framework for performing reactor design optimizations. Utilizing an agent-based approach allows agents to perform tasks independently, while retaining the ability to build off of previous solutions. We develop an agent-based blackboard system (ABBS) for determining the Pareto front (PF) in sodium fast reactor design optimization problems and compared this with the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). Our goal is to evaluate the viability of the ABBS in producing a PF that is comparable with the NSGA-II algorithm. The design space consists of the fuel height, fuel smear, and plutonium fraction in the core, and we seek to minimize the reactivity swing and plutonium mass, while maximizing the burnup. The diversity, coverage, and spread of the PFs generated by the two methods are examined, and the ABBS is able to converge to the same PF as the NSGA-II algorithm. These results show that the ABBS is able to find optimal designs that are similar to those found by the NSGA-II algorithm. We conclude our study by applying the ABBS to the design of a sodium-cooled fast reactor to dispose of weapons-grade plutonium. The ABBS finds a core design that can burn upwards of 17.5 kg of weapons-grade plutonium per year and degrade an additional 195 kg of weapons-grade plutonium per year into non-weapons-grade material.