ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Samuel E. Bays, Joseph Nielsen, Joshua Cogliati, Charles Wemple
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 811-821
Technical Paper | doi.org/10.1080/00295450.2021.1980320
Articles are hosted by Taylor and Francis Online.
The neutronics software, HELIOS, was validated in 2015 for performing core reload design and safety analysis of the Advanced Test Reactor. However, when HELIOS was benchmarked against historic fission-wire measurements (i.e., zero-power full-core measurements), a statistically resolved calculation-to-measurement bias was discovered. The azimuthal power along each fuel plate computed by HELIOS has consistently shown to underpredict measurements made by fission wires in historic zero-power tests near the fuel element side plates.
It was hypothesized during the HELIOS software validation work that this bias is attributable to local moderation in coolant vents in the side plates axially just above and below the fission wires on the fuel plate edges. This work used detailed MCNP and MC21 models of the side plate vents to test this hypothesis. By comparing the average azimuthal biases between HELIOS and two-dimensional and three-dimensional (3-D) MCNP models and a 3-D MC21 model, it was found that the HELIOS azimuthal bias is not due to the measurement.