ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Eva E. Davidson, Andrew T. Godfrey, Katherine E. Royston, Tara M. Pandya, Shane C. Henderson, Thomas M. Evans
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 794-810
Technical Paper | doi.org/10.1080/00295450.2021.1957660
Articles are hosted by Taylor and Francis Online.
The Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) is a reactor simulation software. It offers unique capabilities by combining high-fidelity in-core radiation transport with temperature feedback by using MPACT (a deterministic neutron transport code) and COBRA-TF (a thermal-hydraulic code) with follow-on, fixed-source transport calculations using the Shift Monte Carlo code to calculate ex-core quantities of interest. In these coupled calculations, MPACT provides Shift with the fission source for follow-on ex-core calculations. These ex-core simulations can be set up to calculate detector responses, as well as the flux and fluence in ex-core regions of interest, such as the reactor pressure vessel, nozzle, and irradiated capsules. A Watts Bar Nuclear Plant Unit 1 (WBN1) ex-core model was developed, as described in this paper, and this model was used to perform coupon calculations. The results for the coupon flux calculations show close agreement with the reference values for cycle 1 produced by the two-dimensional Discrete Ordinates Transport (DORT) code and presented in a BWXT Services Inc. report. However, differences in the results (10%) seen in cycles 2 and 3 and the reasons for these differences are discussed in this paper. The VERA WBN1 model was also used to perform a vessel fluence calculation for cycle 1. Additionally, a collaboration between CASL and Duke Energy led to the first code-to-code validation of VERA for reactor ex-core applications that used a model for the Shearon Harris reactor. Results from this collaboration show excellent agreement between VERA and the Monte Carlo N-Particle Transport Code for the detector response calculations. The work performed under this collaboration is also detailed in this paper.