ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Son H. Kim, Temitope A. Taiwo, Brent W. Dixon
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 775-793
Technical Paper | doi.org/10.1080/00295450.2021.1951554
Articles are hosted by Taylor and Francis Online.
Nuclear power is currently the single largest carbon-free source of electricity in the United States. The climate mitigation cost savings of the existing U.S. nuclear fleet is denominated in hundreds of billions of dollars [net present value (NPV)] based on an integrated assessment modeling of the U.S. energy system within a globally consistent framework. Lifetime extensions of the existing nuclear fleet from 40 years to 60 and 100 years resulted in $330 billion to $500 billion (all figures are in U.S. dollars) (NPV) of mitigation cost savings for the United States under a deep decarbonization scenario consistent with limiting global temperature change to 2°C. The addition of new nuclear deployments in the United States increased the total U.S. mitigation cost savings of the 2°C climate goal by up to $750 billion (NPV). Immediate actions are required in the United States and globally to achieve net-zero carbon emissions by mid-century, and once achieving net-zero emissions, they must remain at net-zero indefinitely. Lifetime extensions of the existing nuclear fleet, in the United States and globally, support urgent near-term emissions reduction goals. Additionally, the longevity of nuclear power technologies reduces the need for new capacity additions of all carbon-free electricity sources and supports long-term actions necessary to maintain net-zero emissions.