ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
K. Lisa Reed, Farzad Rahnema
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 562-574
Technical Note | doi.org/10.1080/00295450.2021.1935166
Articles are hosted by Taylor and Francis Online.
Previous work presented a set of stylized three-dimensional benchmark problems based on the Oak Ridge National Laboratory (ORNL) preconceptual design of a fluoride-salt-cooled small modular advanced high-temperature reactor, or SmAHTR, with prismatic assemblies fueled by tri-isotropic (TRISO) particles. That previous work created a detailed description of the benchmark problems by closing several outstanding design gaps from the ORNL preconceptual design report, notably by addressing the lack of active control mechanisms, for which control rod “bundles” were implemented.
In this technical note, the creation of two additional stylized benchmark problem sets based on that past work is detailed, offering two new control rod configurations. The fluoride salt, small size, and highly heterogeneous TRISO-fueled pins make these additional benchmark problem sets useful numerical validation references in benchmarking neutronics tools against continuous-energy stochastic Monte Carlo results. Detailed reference results, including the eigenvalue (keff) and 1/11th assembly-averaged relative fission density distributions, are provided for both control rod configurations in full-core cases with all control rods withdrawn and all control rods fully inserted. A near-critical core benchmark problem and results are provided for one configuration. The provided results are calculated using the continuous-energy Monte Carlo code MCNP.