ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Toshiya Takaki, Michio Murase, Kosuke Hayashi, Akio Tomiyama
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 503-519
Technical Paper | doi.org/10.1080/00295450.2021.1927616
Articles are hosted by Taylor and Francis Online.
The objective of this study was to reduce the uncertainties of correlations for flow characteristics in vertical pipes under flooding at the top end. The void fraction α, pressure gradient dP/dz, and countercurrent flow limitation (CCFL) were previously measured with diameter D = 40 mm and working fluid of air and water. The wall friction and interfacial friction factors (fw and fi) were obtained based on the annular flow model, and CCFL and fw were evaluated in detail. Hence, attention was turned to detailed evaluations of α and fi. Liquid film thickness δ and interfacial friction factor fi for smooth film (SF) due to flooding at the top end were obtained using the previously derived fw correlation and existing dP/dz data with D = 20 to 50.8 mm and pressure P = 0.1 to 4.1 MPa, and empirical correlations for δ and fi were derived. The δ term was well expressed by a function of the liquid Reynolds number ReL, and the uncertainty of the δ correlation was ±0.0062 for α = 0.87 to 0.98. fi was expressed by a function of δ/L (where L is the Laplace length) or the Kutateladze parameter KG*, the dimensionless diameter D* (=D/L), and the density ratio of the gas and liquid phases ρG/ρL. The applicability of the derived correlations to conditions of D = 300 mm and P = 7 MPa was evaluated, and the fi correlation was modified based on fi values computed with the δ correlation. The drift-flux parameters for SF were also considered.