ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Fumihisa Nagase, Takashi Ohtomo, Hiroshi Uetsuka
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 484-493
Technical Paper | doi.org/10.1080/00295450.2021.1905472
Articles are hosted by Taylor and Francis Online.
A control rod alloy composed of silver (Ag), indium (In), and cadmium (Cd) was heated in argon or oxygen at 1073 to 1673 K for 60 to 3600 s. Then, the release behaviors of the elements were analyzed. The elemental release was quite limited below the liquefaction temperature. In argon, almost the entire Cd content was released within 3600 s at >1173 K and within 60 s at >1573 K while the released fractions of Ag and In were <3% and <8%, respectively. In oxygen, the release of Cd, which was quite small at temperatures lower than 1573 K, largely increased to ~30% to 50% at 1673 K for short periods. The releases of Ag and In were also small in oxygen under the analyzed conditions. The comparison with the experimental data suggests that conventional empirical release models may underestimate the Cd release at lower temperatures just after control rod failure in severe accidents.