ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Sasa Kovacevic, Vivek Agarwal, John W. Buttles
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 468-483
Technical Paper | doi.org/10.1080/00295450.2021.1905476
Articles are hosted by Taylor and Francis Online.
Nuclear power plants have a very large catalog of regularly manipulated manual valves. To achieve the desired performance and operating margins, skilled technical staff use these valves to control, start, stop, regulate, and throttle the flow of various fluids through plant systems. Wireless valve position indication (VPI) sensor system technology would enable online monitoring of manual valve positions. Using additive manufacturing techniques, the wireless VPI sensor system is retrofitted onto existing manual valves using a sensor mounting unit (SMU). The structural stability of the retrofitted SMU is important for reliably measuring valve position with the wireless VPI sensor system. This paper presents the design, numerical modeling, and experimental validation of SMUs for rising stem gate and rising handle globe valves. Three types of materials, i.e., ULTEM 9085, chopped carbon fiber reinforced nylon, and continuous carbon fiber reinforced nylon, were used to three-dimensionally print the SMUs. The free vibration responses of these SMUs are presented in this paper. The results show how the choice of design, material, and other printer parameters impact SMU vibration responses, especially for the first and second eigenfrequencies. Next, performance of the SMUs is evaluated through both numerical and experimental vibration analysis, and then, the consistency of outcomes using each analysis type is presented. In terms of the stiffness-to-weight ratio and eigenfrequencies, the research shows the SMU printed with 5% continuous carbon fiber reinforced nylon fared significantly better than those printed from the other two materials.