ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Athena A. Sagadevan, Sunil S. Chirayath
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 428-436
Technical Paper | doi.org/10.1080/00295450.2021.1922259
Articles are hosted by Taylor and Francis Online.
Until a long-term solution is finalized, interim storage of sufficiently cooled spent nuclear fuel (SNF) assemblies in dry casks is the predominant practice. Since these dry casks can contain approximately 160 kg of reactor-grade plutonium, they require safeguards monitoring. Results of a simulation study conducted on the design development and analysis of a remote monitoring system (RMS) are presented. The goal of the study was to determine the suitability of this RMS to meet the SNF monitoring objectives. MCNP simulations of a dry cask with all its contents and a set of simulations with one or two removed SNF assemblies were performed to test the detection capabilities of the RMS. The removed assemblies were substituted with dummy assemblies to simulate concealment. The studies showed that the RMS design is suitable to monitor and detect the removal of even a single SNF assembly from the cask.