ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Sudipta Saha, Jamil Khan, Travis Knight, Tanvir Farouk
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 414-427
Technical Paper | doi.org/10.1080/00295450.2021.1936863
Articles are hosted by Taylor and Francis Online.
A global model is proposed to simulate the drying process of used nuclear fuel assemblies under vacuum drying conditions. The transient model consists of a coupled mass and energy conservation equation with appropriate source and sink terms. The classic Hertz-Knudsen expression is employed to resolve the evaporation rate and the associated water mass depletion in the system. Both latent heat of vaporization and residual decay heat are considered as sink and source in the energy conservation, respectively. The model is employed to simulate vacuum drying of spent nuclear fuel rod storage systems. Multistage stepwise vacuuming of the system is emulated, and several parametric studies are conducted to identify their role in the drying process. The predicted temporal profiles show that the proposed model is able to capture qualitative trends of the water removal rate, hence the dryness level of the system. The model prediction is also compared against experiments where the amount of residual water after a standard vacuum drying procedure is quantified. The predictions are found to compare favorably with the experimental measurements.