ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sudipta Saha, Jamil Khan, Travis Knight, Tanvir Farouk
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 414-427
Technical Paper | doi.org/10.1080/00295450.2021.1936863
Articles are hosted by Taylor and Francis Online.
A global model is proposed to simulate the drying process of used nuclear fuel assemblies under vacuum drying conditions. The transient model consists of a coupled mass and energy conservation equation with appropriate source and sink terms. The classic Hertz-Knudsen expression is employed to resolve the evaporation rate and the associated water mass depletion in the system. Both latent heat of vaporization and residual decay heat are considered as sink and source in the energy conservation, respectively. The model is employed to simulate vacuum drying of spent nuclear fuel rod storage systems. Multistage stepwise vacuuming of the system is emulated, and several parametric studies are conducted to identify their role in the drying process. The predicted temporal profiles show that the proposed model is able to capture qualitative trends of the water removal rate, hence the dryness level of the system. The model prediction is also compared against experiments where the amount of residual water after a standard vacuum drying procedure is quantified. The predictions are found to compare favorably with the experimental measurements.