ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Germina Ilas, Joseph R. Burns
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 403-413
Technical Paper | doi.org/10.1080/00295450.2021.1935165
Articles are hosted by Taylor and Francis Online.
Energy release from the decay of radionuclides in nuclear fuel after its discharge from reactor is a critical parameter for design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. Well-validated computational tools and nuclear data are essential for decay heat prediction. This paper summarizes the validation of the SCALE nuclear analysis code system version 6.2.4, used with ENDF/B-VII.1 libraries, for decay heat analysis of light water reactor used fuel. The experimental data used for validation include full-assembly decay heat measurements that cover assembly burnups of 5 to 51 GWd/tonne U, cooling times after discharge in the 2- to 27-year range, and initial fuel enrichments up to 4 wt% 235U. The comparison between calculated (C) and experimental (E) decay heat showed very good agreement, with an average C/E over all considered measurements of 1.006 (σ = 0.016) for pressurized water reactor and 0.984 (σ = 0.077) for boiling water reactor assembly measurements. The effect of using assembly-average versus axially varying modeling data on the calculated decay heat, important to thermal analyses for used fuel transportation and storage systems, is discussed.