ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yang Hong Jung, Young Jun Kim, Hyo Jik Lee
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 384-393
Technical Note | doi.org/10.1080/00295450.2021.1893087
Articles are hosted by Taylor and Francis Online.
Radioactive corrosion product materials collected from the control rod drive mechanism (CRDM) housing in a pressurized water reactor (PWR, HANBIT-1 KNPP) were analyzed using an electron probe micro analyzer (EPMA). It is challenging to analyze the composition of radioactive corrosion products using an EPMA due to the rough surface shape and size, and even more so when the products are stacked in the form of small grains.
The purpose of this study is to determine whether the corrosive products found inside the CRDM housing are stuck in contact with primary coolant or just oxide. In this study, not only was the surface condition of the samples very rough, but the samples that were quantitatively analyzed using a normal method had extremely low electrical conductivity using a normal method. We therefore tested a new semiquantitative analysis method using X-ray image mapping. In this technical note, we propose a method for collecting and analyzing corrosion products adsorbed in the CRDM. Reference papers on radioactive corrosion products collected from the CRDM could not be found.
It is consequently difficult to argue that the method of collecting samples and performing the quantitative analysis suggested in this study is the best, but it can be said that it is an appropriate analysis method. Finally, the usefulness of the semiquantitative analysis is reviewed by verifying the analysis results of radioactive corrosion products collected from the CRDM housing in a PWR.