ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Taylan Tuğrul
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 357-363
Technical Paper | doi.org/10.1080/00295450.2021.1895407
Articles are hosted by Taylor and Francis Online.
In these days, Monte Carlo (MC) simulation is a method that can calculate the radiation dose that occurs in an environment in the most accurate way. The correct measurement of the dose occurring on the patient’s surface is of great importance to estimate the reactions that may occur on the patient’s skin. This importance encouraged us to do this study. The aim of this study is to determine buildup region and surface doses using MC simulation and to compare them with results of the parallel plane ion chamber and Treatment Planning System (TPS) measurements for 6-MV photon beams. Surface doses normalized to the maximum dose for the parallel plane ion chamber, MC simulation, fast photon (FP) algorithm, and collapsed cone convolution superposition (CC) algorithm are 13.6%, 30.28%, 0%, and 27.33%, respectively. The CC algorithm and parallel plane ion chamber measurements are compatible with MC simulation but the FP algorithm has calculated the dose less to a depth of 0.8 cm. Measuring the surface dose and the doses in the buildup region is of great importance in terms of accurately predicting the complications that may occur in the patient’s skin and taking precautions early. Using some methods and correction factors, the surface dose and the doses that may occur in the buildup region can be accurately calculated. It is recommended not to use the FP algorithm for stereotactic body radiation therapy and intensity-modulated radiation therapy treatments, as it cannot calculate doses correctly in the buildup region and surface.