ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Martin Bengtsson, Peter Jansson, Ulrika Bäckström, Fredrik Johansson, Anders Sjöland
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 295-302
Technical Paper | doi.org/10.1080/00295450.2021.1880851
Articles are hosted by Taylor and Francis Online.
A method to determine the absolute activity of 137Cs in irradiated nuclear fuel is presented. Using a well-known point-like calibration source in combination with measurements of the gamma-ray intensity from the nuclear fuel and Monte Carlo calculations based on the nominal measurement geometry, the activity content can be determined without prior knowledge of the intrinsic detection efficiency of the gamma-ray detector. The presented method is tested using measurements of the 137Cs intensity from spent nuclear fuel of the pressurized water type at the central interim storage in Sweden. Using an assumption of homogeneous distribution of 137Cs throughout the fuel, we demonstrate a linear relationship between measured activity and the activity calculated by a state-of-the-art simulation code. For future studies, we suggest some factors that potentially can decrease the uncertainty in the correlation between measured and calculated activity.