ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Martin Bengtsson, Peter Jansson, Ulrika Bäckström, Fredrik Johansson, Anders Sjöland
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 295-302
Technical Paper | doi.org/10.1080/00295450.2021.1880851
Articles are hosted by Taylor and Francis Online.
A method to determine the absolute activity of 137Cs in irradiated nuclear fuel is presented. Using a well-known point-like calibration source in combination with measurements of the gamma-ray intensity from the nuclear fuel and Monte Carlo calculations based on the nominal measurement geometry, the activity content can be determined without prior knowledge of the intrinsic detection efficiency of the gamma-ray detector. The presented method is tested using measurements of the 137Cs intensity from spent nuclear fuel of the pressurized water type at the central interim storage in Sweden. Using an assumption of homogeneous distribution of 137Cs throughout the fuel, we demonstrate a linear relationship between measured activity and the activity calculated by a state-of-the-art simulation code. For future studies, we suggest some factors that potentially can decrease the uncertainty in the correlation between measured and calculated activity.