ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. Jung, H. Y. Kim, S. M. An
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 268-283
Technical Paper | doi.org/10.1080/00295450.2021.1929769
Articles are hosted by Taylor and Francis Online.
For analysis of an ex-vessel severe accident, the corium melt conditions inside the reactor vessel are important at the time of the reactor vessel failure together with the reactor vessel failure mode. To determine penetration tube failure in the lower head of the reactor vessel during a severe accident, the Korea Atomic Energy Research Institute developed the PENetration Tube Analysis Program 2.0 (PENTAP 2.0) and carried out validation work based on experimental data that can simulate penetration tube heatup, rupture, penetration weld failure, and penetration tube ejection failure. A numerical simulation was undertaken to investigate the effect of the presence of melt in a tube, the expansion direction of the reactor vessel hole, and wall ablation on tube failure using PENTAP 2.0. The simulation results showed that the presence of melt inside the tube helps prevent tube ejection. When melt is not in the penetration tube, tube ejection is strongly dependent on the expansion direction of the reactor vessel hole.