ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Pedro Mena, R. A. Borrelli, Leslie Kerby
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 232-245
Technical Paper | doi.org/10.1080/00295450.2021.1905470
Articles are hosted by Taylor and Francis Online.
Artificial intelligence is becoming a larger part of operations for many industries. One industry where this is occurring rapidly is the nuclear industry. Researchers from around the world are looking to implement this technology in various areas of the nuclear industry. This paper explores the use of machine learning to diagnose problems. This project makes use of synthetic data collected from a Generic Pressurized Water Reactor (GPWR) simulator on whether a reactor is operating normally or experiencing one of four different transient events. A dataset was created consisting of over 30 000 reactor operational states. The data were explored and wrangled using Python and the Pandas package, using a variety of methods. Once ready, the data were randomly shuffled, with half the data being used for training and the other half being used for testing. Six different machine learning models were created using scikit-learn and the AutoML package Tree-based Pipeline Optimization Tool (TPOT). These models were created using six data scaling methods along with six feature reduction/selection methods. These models were validated using accuracy, precision, recall, and F1 score. The accuracy of the individual transients was also calculated. All six of the models had validation scores above 95%, with the decision tree and logistic regression models performing the best. These results are promising for the possible future use of machine learning in reactor diagnostics.