ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Takahiro Arai, Masahiro Furuya, Kenetsu Shirakawa
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 203-221
Technical Paper | doi.org/10.1080/00295450.2021.1897733
Articles are hosted by Taylor and Francis Online.
A subchannel void sensor (SCVS) acquires the two-phase flow in a rod bundle as the time-series data of cross-sectional distributions. Herein, the temperature and pressure ranges of an SCVS were extended to include the rated conditions of boiling water reactors. The improved SCVSs were installed in a 5 × 5 heated rod bundle at eight height levels. In a boiling experiment using the rod bundle, the three-dimensional distributions of the boiling two-phase flow were measured over a wide pressure range (up to 7.2 MPa). The new experimental data were compared with existing experimental data and the results of a subchannel analysis. Experimental results were consistent with those of a high-energy X-ray computed tomography study of a heated rod bundle with the same geometry and under the same heat and flow conditions as those used in our study. The subchannel analysis code reproduced the experimental results fairly well, and the obtained database is applicable for validating and improving thermal-hydraulic analysis codes.