ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Joshua A. Hubbard, Timothy J. Boyle, Ethan T. Zepper, Alexander Brown, Taylor Settecerri, Joshua L. Santarpia, Nelson Bell, Joseph A. Zigmond, Steven S. Storch, Brenda J. Maes, Nicole D. Zayas, Dora K. Wiemann, Marissa Ringgold, Fernando Guerrero, Xavier J. Robinson, Gabriel A. Lucero, Laura J. Lemieux
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 137-153
Technical Paper | doi.org/10.1080/00295450.2021.1880255
Articles are hosted by Taylor and Francis Online.
Solid waste samples consisting of shredded cellulose, coated with either mesoparticles of metallic salts or dried metal nitrate (lutetium, ytterbium, or depleted uranium) solutions, were generated to mimic solid nuclear waste. After burning these samples, the masses of the aerosolized metal cations were quantified by leaching them from air filters and analyzing the leachate with inductively coupled plasma mass spectrometry. The airborne release fractions (ARFs) for Lu and depleted uranium nitrates were 1 × 10−4, and 3 × 10−3 for Lu and depleted uranium mesoparticle salts, respectively. Uncertainties in ARFs were approximately 10% for the metal nitrates and 30% for the metallic mesoparticles. These data are most applicable to waste materials with 1% metal mass loading where the initial respirable fraction of contaminant particles is one. ARFs were consistent across the two metals, but there was an order of magnitude difference with respect to the physical and chemical form (mesoparticle salt versus nitrate). Cellulose combustion literature indicates that combustion pathways were likely affected by off-gassing and endothermic decomposition reactions. In comparison to ARF values from DOE-HDBK-3010-94, “Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities,” this dataset was consistent with previous results but provides a well-characterized and reproducible method for doping cellulosic materials with nuclear waste surrogates to serve as a baseline for future experimental and computational works.