ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Michael G. Devereux, Paul Murray, Graeme West
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 115-128
Technical Paper | doi.org/10.1080/00295450.2020.1863067
Articles are hosted by Taylor and Francis Online.
Remote visual inspection is a common approach to understanding the health of key components and substructures within nuclear power plants, particularly in difficult to access and high dosage areas. Interpretation of inspection footage is a manually intensive procedure and challenges arise in localizing and dimensioning defects directly from a video feed, which may be subject to uncertainty from a range of sources such as lens distortion, nonuniform lighting, and lack of depth from a monocular camera system. A common approach to addressing these issues is to develop a scaling factor based on identifying a reference object of known dimensions in the image and using this to size regions of interest. Manual, accurate identification of these reference objects is onerous, time consuming, and prone to variation across different human experts, therefore, robust identification of suitable reference objects in an automated, reliable, and repeatable manner is of significant value. In this paper we evaluate two approaches for the automated detection of reference objects in the inspection of graphite cores in the United Kingdom’s fleet of advanced gas-cooled reactors (AGRs). The first method is a multistep approach using tools from mathematical morphology. The approach uses a genetic algorithm to “grow” suitable structuring elements, refine the order of operations, and remove operations proposed by the human designer that have a negative impact on performance. The second approach uses semantic segmentation, a technique which is normally applied to scene labeling in computer vision applications, applied to produce a binary mask, separating the reference object from the background. We show that this second method performs significantly better than the mathematical morphology approach when applied to the identification of brick interface keyways in AGR inspection images. Though improved in terms of accuracy, it is recognized that a greater initial effort is required to train the approach, and as it utilizes black-box neural network approaches, the greater transparency offered by the mathematical morphology approach is lost. While explicability of techniques is often a highly desirable characteristic of automated analysis techniques applied to health assessment within nuclear power plants, the results of the reference object detection can be made explicit to the end user, ensuring that the human analyst is retained within the decision-making process thus mitigating the need for transparency.