ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Tyler R. Steiner, Emily N. Hutchins, Richard H. Howard
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 100-114
Technical Paper | doi.org/10.1080/00295450.2021.1879582
Articles are hosted by Taylor and Francis Online.
Nuclear thermal propulsion (NTP) demonstrated a reported technology readiness level of 5 during the work performed in the 1950s–1970s under the Rover program. This level of capability was achieved through the design, construction, and use of 22 experimental ground tests. These experiments served as testbeds for designs, materials, and instrumentation at prototypical NTP conditions. To continue the investigation into NTP system materials, components, and fuels, a modern experimental testbed has been designed and implemented. A steady-state, high-temperature, subscale, in-pile testbed has been developed to continue this investigation. The In-Pile Experiment Set Apparatus (INSET) has demonstrated that it can be used to test samples under two NTP prototypical environmental factors: temperature and neutron fluence. The demonstration using The Ohio State University Research Reactor is presented here. This demonstration required INSET to maintain a thermal environment below 1070 K for 15 min during a 5-h irradiation to achieve a neutron fluence around 1017 n/cm2.