ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. C. Harvill, J. W. Lane, J. M. Link, S. W. Claybrook, T. L. George, T. Kindred
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 70-99
Technical Paper | doi.org/10.1080/00295450.2021.1884491
Articles are hosted by Taylor and Francis Online.
The Molten Salt Reactor Experiment (MSRE), which operated at Oak Ridge National Laboratory from 1965 to 1969, was an experimental reactor that used UF4 fuel dissolved in molten fluoride salt. Criticality was achieved when the fuel salt mixture passed through the graphite-moderated core region. Therefore, because the fuel and fission products flowed through the system, delayed neutron precursors were not confined to the core, and decay heat was released outside the core, which is a unique challenge relative to more traditional reactor designs with solid fuel. Therefore, research and demonstration reactors such as MSRE have become a valuable source of information for benchmarking modeling and simulation tools for advanced reactor designs. One such tool being considered is GOTHIC, which is a coarse-grid computational fluid dynamics multiphysics software package. GOTHIC includes attributes and physical phenomena needed for modeling these advanced, non–light water reactor designs. For example, GOTHIC includes fluid property tables for various molten salts; a tracer-tracking module for modeling fission products and the radioactive decay and heat release by delayed neutron precursors locally in the fluid outside the core; and other necessary capabilities for modeling molten salt reactor (MSR) designs, including the ability to model dissolved gases. GOTHIC is used to benchmark steady-state and transient conditions from the MSRE. Zero-power physics testing included fuel salt pump start-up and coast-down transients with a control rod automatically moving to maintain criticality. The control rod motion calculated by GOTHIC is a reasonable match to measured data from these transients. Further, low-power testing included a natural convection transient with no control rod motion such that reactor power was responding to heat load demand from the radiator. The reactor power and fuel salt and coolant salt temperatures calculated by GOTHIC exhibit good agreement with measured data. These results confirm GOTHIC capabilities for modeling MSR designs with circulating fuel.