ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Cihang Lu, Zeyun Wu
Nuclear Technology | Volume 208 | Number 1 | January 2022 | Pages 37-48
Technical Paper | doi.org/10.1080/00295450.2021.1874779
Articles are hosted by Taylor and Francis Online.
A one-dimensional (1-D) thermal stratification (TS) model was recently developed in our research group to predict the TS phenomenon in pool-type sodium-cooled fast reactors. This paper performs uncertainty quantification (UQ) of the 1-D TS model to evaluate its performance by considering the aleatoric uncertainties that existed in the model parameters and to identify the plausible sources of the epistemic uncertainties. The Latin hypercube sampling–Monte Carlo method (LHS-MC), which is elaborated with an example in this paper to facilitate its understanding and implementation, is used for the UQ process. The advantages of LHS-MC, including both better stability and better accuracy than the conventional random sampling–Monte Carlo method with fewer realizations, are demonstrated in this paper.
In total, 648 temperature measurements acquired from nine experimental transients performed in a university-scale Thermal Stratification Experimental Facility are used to evaluate the performance of the computational 1-D TS model. The UQ result shows that 77.5% of the experimental data can be predicted by the 1-D TS model within uncertainty ranges, which indicates the good performance of the computational model when the aleatoric uncertainties are correctly captured. The rest 22.5% of the experimental data are found located outside of the uncertainty ranges, which reveals the existence of the epistemic uncertainties caused by the lack of understanding of the TS phenomenon and defects in the 1-D model. The simple jet model currently employed by the 1-D TS model is thought to be one of the attributors to these defects.