ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Thomas A. Chadwick, M. B. Chadwick
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S356-S373
Critical Review | doi.org/10.1080/00295450.2021.1903300
Articles are hosted by Taylor and Francis Online.
The Christy Gadget is the informal name for the plutonium device detonated in the Trinity test on July 16, 1945. In September 1944, Robert Christy, working in the theoretical implosion group, proposed a novel concept that altered the design of the nuclear core in Fat Man. While scientists originally intended to use a hollow sphere of plutonium, this design entailed substantial risk due to the likelihood of asymmetries resulting from implosion. Christy proposed changing the design to a solid sphere of plutonium with a modulated neutron source, and the design was eventually adopted, tested at Trinity, and used in the attack on Nagasaki. While there is no question regarding the important role that Christy played in demonstrating its feasibility as a reliable design, there is a debate as to who initially proposed the idea; though most sources have attributed this invention to Christy, some historical sources have attributed credit to Christy’s group leader, Rudolf Peierls, or indeed other scientists. This paper seeks to outline and resolve this dispute. We present new unclassified evidence extracted from previously unavailable sources (to unclassified audiences) from the National Security Research Center archives at Los Alamos National Laboratory. This evidence consists of 1945–1946 patent documentation, oral history interview tapes of Christy and Peierls, and monthly 1944 progress reports from the Theoretical Division. Though Christy and Peierls share joint credit on the patent, both Christy’s and Peierls’ words and writings, together with sources from Hans Bethe and Edward Teller, support the traditional view that Christy was indeed the originator of the idea. While Christy does deserve the majority of the credit for the invention and design, we acknowledge the important role Peierls and von Neumann played in its development.