ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Roy S. Baty, Scott D. Ramsey
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S335-S351
Technical Paper | doi.org/10.1080/00295450.2021.1922263
Articles are hosted by Taylor and Francis Online.
This paper presents a brief historical review of G. I. Taylor’s solution of the point blast wave problem which was applied to the Trinity test of the first atomic bomb. Lie group symmetry techniques (also referred to throughout this paper as geometric techniques) are used to derive Taylor’s famous two-fifths law that relates the position of a blast wave to the time after the explosion and the total energy released. The theory of exterior differential systems is combined with the method of characteristics to demonstrate that the solution of the blast wave problem is directly related to the basic relationships that exist between the symmetry (or geometry) and the physics of wave propagation through the equations of motion. The point blast wave model is cast in terms of two exterior differential systems, and both systems are shown to be integrable with local solutions for the velocity, pressure, and density along curves in space and time behind the blast wave. This work is dedicated to the memory of Professor Roy Axford, who introduced many of his students to the topic of symmetry analysis of differential equations.