ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Joseph C. Martz, Franz J. Freibert, David L. Clark
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S266-S285
Technical Paper | doi.org/10.1080/00295450.2021.1913035
Articles are hosted by Taylor and Francis Online.
We describe the wartime challenges associated with the rapid developments in plutonium chemistry and metallurgy that were necessary to produce the core of the Trinity Device. Beginning with microgram quantities of plutonium metal late in 1943, initial measurements showed a wide and confusing variance in density and other properties. These confusing results were the first clues to the astounding complexity of plutonium. As this complexity was revealed, it introduced new challenges for the fabrication of kilogram-scale parts. In a remarkable period from January 1944 to June 1945, Manhattan Project scientists made rapid progress in understanding plutonium chemistry and metallurgy. By early 1945, they had discovered five of the six ambient-pressure phases of unalloyed plutonium and reported the density of these phases to within a value of 0.1 g/cm3 of those accepted today. They solved the stability problem introduced by these phases with a rapid alloy development program that ultimately identified gallium as the preferred element to stabilize the δ-phase, producing a plutonium alloy still of scientific and technical interest today. We conclude with a description of postwar developments in these areas, including applications of wartime plutonium metallurgy to civilian applications in nuclear reactors. We dedicate this paper to the memory of Ed Hammel, the Manhattan Project plutonium metallurgist whose previous description and documentation of plutonium history during the war has been essential in our research.