ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Eric N. Brown, Dan L. Borovina
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S204-S221
Critical Review | doi.org/10.1080/00295450.2021.1913954
Articles are hosted by Taylor and Francis Online.
This paper is set during the 1944 and 1945 final push to complete Project Y—the Manhattan Project at Los Alamos—and focuses primarily on overcoming the challenge of creating and demonstrating a successful convergent explosive implosion to turn a subcritical quantity of plutonium into a critical mass. The critical mass would then efficiently yield kilotons of trinitrotoluene (TNT)-equivalent energy in about a microsecond, demonstrating the implosion atomic bomb concept. This work culminated in the Trinity atomic test near Alamogordo, New Mexico, on July 16, 1945. This implosion effect demarcated the approach to explosive science and technology that the Los Alamos National Laboratory has followed ever since, including development of high-explosive synthesis and formulation, small and large test and diagnostic facilities, shock dynamics theory, high-explosive system design engineering, and three-dimensional implosion modeling and simulation using some of the fastest computers in the world. This work also ushered in new generations of interdisciplinary scientists contributing to the field of explosives and a period of broader application of precision high explosives in conventional munitions, demolition, mining and oil exploration, and space travel.