ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Nathaniel R. Morgan, Billy J. Archer
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S147-S175
Technical Paper | doi.org/10.1080/00295450.2021.1913034
Articles are hosted by Taylor and Francis Online.
The intent of this paper is to discuss the history and origins of Lagrangian hydrodynamic methods for simulating shock-driven flows. The majority of the pioneering research occurred within the Manhattan Project. A range of Lagrangian hydrodynamic schemes were created between 1943 and 1948 by John von Neumann, Rudolf Peierls, Tony Skyrme, and Robert Richtmyer. These schemes varied significantly from each other; however, they all used a staggered grid and finite difference approximations of the derivatives in the governing equations, where the first scheme was by von Neumann. These ground-breaking schemes were principally published in Los Alamos laboratory reports that were eventually declassified many decades after authorship, which motivates us to document the work and describe the accompanying history in a paper that is accessible to the broader scientific community. Furthermore, we seek to correct historical omissions on the pivotal contributions made by Peierls and Skyrme to creating robust Lagrangian hydrodynamic methods for simulating shock-driven flows. Understanding the history of Lagrangian hydrodynamic methods can help explain the origins of many modern schemes and may inspire the pursuit of new schemes.