ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Nathaniel R. Morgan, Billy J. Archer
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S147-S175
Technical Paper | doi.org/10.1080/00295450.2021.1913034
Articles are hosted by Taylor and Francis Online.
The intent of this paper is to discuss the history and origins of Lagrangian hydrodynamic methods for simulating shock-driven flows. The majority of the pioneering research occurred within the Manhattan Project. A range of Lagrangian hydrodynamic schemes were created between 1943 and 1948 by John von Neumann, Rudolf Peierls, Tony Skyrme, and Robert Richtmyer. These schemes varied significantly from each other; however, they all used a staggered grid and finite difference approximations of the derivatives in the governing equations, where the first scheme was by von Neumann. These ground-breaking schemes were principally published in Los Alamos laboratory reports that were eventually declassified many decades after authorship, which motivates us to document the work and describe the accompanying history in a paper that is accessible to the broader scientific community. Furthermore, we seek to correct historical omissions on the pivotal contributions made by Peierls and Skyrme to creating robust Lagrangian hydrodynamic methods for simulating shock-driven flows. Understanding the history of Lagrangian hydrodynamic methods can help explain the origins of many modern schemes and may inspire the pursuit of new schemes.