ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mark B. Chadwick
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S24-S61
Critical Review | doi.org/10.1080/00295450.2021.1901002
Articles are hosted by Taylor and Francis Online.
Nuclear physics advances in the United States and Britain from 1939 to 1945 are described. The Manhattan Project’s work led to an explosion in our knowledge of nuclear science. A conference in April 1943 at Los Alamos provided a simple formula used to compute critical masses and laid out the research program needed to determine the key nuclear constants. In short order, four university accelerators were disassembled and reassembled at Los Alamos, and methods were established to make measurements on extremely small samples owing to the initial lack of availability of enriched 235U and plutonium. I trace the program that measured fission cross sections, fission-emitted neutron multiplicities and their energy spectra, and transport cross sections, comparing the measurements with our best understanding today as embodied in the Evaluated Nuclear Data File ENDF/B-VIII.0. The large nuclear data uncertainties at the beginning of the project, which often exceeded 25% to 50%, were reduced by 1945 often to less than 5% to 10%. Uranium-235 and plutonium-239 fission cross-section assessments in the fast mega-electron-volt range were reduced following more accurate measurements, and the neutron multiplicity increased. By a lucky coincidence of canceling errors, the initial critical mass estimates were close to the final estimated masses. Some images from historical documents from our Los Alamos archives are shown. Many of the original measurements from these early years have not previously been widely available. Through this work, these data have now been archived in the international experimental nuclear reaction data library (EXFOR) in a collaboration with the International Atomic Energy Agency and Brookhaven National Laboratory.