ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Mark B. Chadwick
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S24-S61
Critical Review | doi.org/10.1080/00295450.2021.1901002
Articles are hosted by Taylor and Francis Online.
Nuclear physics advances in the United States and Britain from 1939 to 1945 are described. The Manhattan Project’s work led to an explosion in our knowledge of nuclear science. A conference in April 1943 at Los Alamos provided a simple formula used to compute critical masses and laid out the research program needed to determine the key nuclear constants. In short order, four university accelerators were disassembled and reassembled at Los Alamos, and methods were established to make measurements on extremely small samples owing to the initial lack of availability of enriched 235U and plutonium. I trace the program that measured fission cross sections, fission-emitted neutron multiplicities and their energy spectra, and transport cross sections, comparing the measurements with our best understanding today as embodied in the Evaluated Nuclear Data File ENDF/B-VIII.0. The large nuclear data uncertainties at the beginning of the project, which often exceeded 25% to 50%, were reduced by 1945 often to less than 5% to 10%. Uranium-235 and plutonium-239 fission cross-section assessments in the fast mega-electron-volt range were reduced following more accurate measurements, and the neutron multiplicity increased. By a lucky coincidence of canceling errors, the initial critical mass estimates were close to the final estimated masses. Some images from historical documents from our Los Alamos archives are shown. Many of the original measurements from these early years have not previously been widely available. Through this work, these data have now been archived in the international experimental nuclear reaction data library (EXFOR) in a collaboration with the International Atomic Energy Agency and Brookhaven National Laboratory.