ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Alan B. Carr
Nuclear Technology | Volume 207 | Number 1 | December 2021 | Pages S1-S23
Critical Review | doi.org/10.1080/00295450.2021.1927625
Articles are hosted by Taylor and Francis Online.
The Trinity test of July 16, 1945, marked the scientific apex of the Manhattan Project. Often recognized as the symbolic birth of the nuclear age, Trinity’s multifaceted legacy remains just as captivating and complex today as it did 75 years ago. This paper examines why the test was necessary from a technical standpoint, shows how Los Alamos scientists planned the event, and explores the physical and emotional aftermaths of Trinity. The author also uses rarely accessed original records to reconstruct the story of Trinity’s health hazards, as seen through the eyes of radiation technicians and medical doctors as events unfolded. Trinity was conducted as the Potsdam Conference began, weeks after the collapse of Nazi Germany. It was considered necessary to let President Harry S. Truman know whether the United States possessed a nuclear capability ahead of his negotiations with Joseph Stalin, the Soviet premier. The author examines the competing priorities that drove the timetable for the test: international politics, security, and safety. Three weeks after Trinity, a gun-assembled enriched-uranium bomb called Little Boy was used against the Japanese city of Hiroshima. Three days later, Fat Man, a weaponized version of the imploding Trinity device, was dropped on Nagasaki. The author briefly examines these strikes and what impact they may have had on the Japanese surrender. The paper concludes by examining the legacy of the Trinity test 75 years into the age it helped usher in.