ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yi-Cheng Tian, Min Lee
Nuclear Technology | Volume 207 | Number 12 | December 2021 | Pages 1913-1933
Technical Note | doi.org/10.1080/00295450.2020.1843955
Articles are hosted by Taylor and Francis Online.
The security of nuclear power plants becomes an ever more important issue after the tragedy of the World Trade Center of New York City on September 11, 2000. Utilities around the world have significantly increased the resources used to enhance the security of nuclear power plants. In this study, a mathematical model based on Monte Carlo simulations is developed to calculate the probability of invaders being located in a building in the vital area, on a floor of the building, and in a region of the floor when invaders break into the vital area successfully.
In the model, it is assumed that invaders have no specific target to sabotage and they have no prior knowledge of the layout of the plant. Invaders are running around randomly in the vital area, and Monte Carlo simulations are used to trace their paths on a floor. The results can help the security of a nuclear power plant locate invaders in the vital area.
If it is assumed that the damage caused by the invaders is similar to the damage induced by a fire, the product of the probability of invaders being located in a region and the fire conditional core damage probability of the region ijk (CCDPF,ijk) from a fire hazard probabilistic safety assessment can be used to prioritize the importance of the region to the risk of terrorist sabotage and to allocate resources that enhance physical protection. The summation of the product for all the region is the conditional core damage probability of terrorist attack (CCDPS).
The surrogate plant used in the present study is a typical General Electric–designed Boiling Water Reactor-6 with Mark III containment. The vital area in this study has six entrances and three buildings: turbine, control, and auxiliary. Among the 196 regions considered in the analysis, the majority (between 85% and 92% for different entrances) have the Pijk of locating terrorist probability of less than 10−2. The top three average Pijk regions are located in the turbine building. The eight regions with CCDPF,ijk equal to 1.0 of the plant contribute 86.8% of the total average CCDPS. Region AUX56, which is the corridor on the third floor of the auxiliary building, contributes 33.9% of the risk of core damage. Region AUX14, which is the corridor on the first floor of the auxiliary building, contributes 17.1% of this risk.